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6  SCIENCE HIGHLIGHTS: Tipping points

In 1969, M.I. Budyko in Russia and W.D. 
Sellers in the US published two very similar 
studies. From reasoning about the energy 
balance of the Earth's system, they found 
that comparatively small variations of 
atmosphere transparency (Budyko) or in 
solar constant (Sellers) would be enough 
to drive the Earth into an ice age. Their 
key discovery was that Earth's climate 
could exhibit two steady states. Earlier that 
decade, Stommel (1961) deduced the ex-
istence of irreversible transitions between 
two thermohaline circulation structures 
in a simple model of abyssal water flow. 
Now we also think that vegetation-atmos-
phere coupling can lead to multiple states 
(Brovkin 1998). 

The existence of multiple steady states 
leads naturally to the concept of “tipping”. 
Within a state, a system is largely self-sta-
bilizing, but too large a perturbation may 
shift it into another self-stabilizing state, 
with little probability of escaping back to 
the original state. The ideas behind the 
models of Budyko, Sellers and Stommel 
provided a basis to interpret a range of 
paleoclimate events, including glacial 
inception, Heinrich events, and the end of 
African Humid Period.

What about the deglaciation? In a quite 
mathematical but pioneering article, 
Saltzman and Verbitzky (1993) pointed out 
that two possible destabilization mecha-
nisms could be at play: the mechanical col-
lapse of Northern Hemisphere ice sheets 
and the abrupt release of CO2 accumulated 
in the deep ocean to the atmosphere. 
These two processes are still considered 
relevant today (Abe-Ouchi et al. 2013; 
Paillard and Parrenin 2004)

Tipping to ping pong
Is the deglaciation, however, really the 
consequence of passing a “tipping point”? 
Or, to paraphrase Crowley (2002), are we 
looking obsessively for "tipping, tipping 
everywhere"? 

Models such as Stommel’s feature a spe-
cific mathematical property, known in the 
specialized literature as a "fold bifurca-
tion". It is a common feature of non-linear 

systems that fits well with the idea that a 
slow change in environmental conditions 
can induce a rapid and irreversible tran-
sition towards a new state once a "thresh-
old" is crossed (Fig. 1A). However, this is 
only one of a very rich set of possibilities. 
For example, in the Paillard-Parrenin model 
(2004), a glacial maximum is inherently un-
stable, and CO2 outgassing ejects the sys-
tem toward an interglacial. A background 
glaciation process then brings the system 
back to a glacial state, from where it is 
ejected again. In this model, the glacial-in-
terglacial process no longer requires an 
externally forced tipping: it is the manifes-
tation of a self-sustained oscillation, also 
known as a limit cycle. Instead of tipping, 
this (Fig. 1B) is ping pong!

Accounting for Randomness
Fold bifurcations and limit cycles are 
examples of concepts defined by a branch 
of mathematics called "dynamical systems 
theory". Since the 1960s, this discipline has 
provided climate scientists with an inex-
haustible framework for depicting, charac-
terizing and hypothesizing about possible 
system transitions and cycles. Ghil (1976) 
wrote one of the pioneering papers on the 
subject. More recently, Crucifix (2013), and 

Aswhin and Ditlevsen (2015) have analyzed 
models akin to those shown in Figure 1 in 
the context of ice ages. 

Such models represent a very small class of 
possibilities. In particular, they are "deter-
ministic": the trajectory is entirely deter-
mined by original conditions and forcing. 
Since the seventies, however, climate 
scientists have realized that this framework 
needs to be extended. The problem is that 
spectral analysis shows that the climate 
system varies on all timescales (Fig. 2), yet 
deterministic models always neglect a part 
of this spectrum. So we need, somehow, to 
account for the unresolved fluctuations to 
realistically represent dynamical effects. 

This is where stochastic theory can help. 
A stochastic quantity is a mathematical 
concept used to represent a variable which 
is not known precisely, but which can be 
described in terms of probability distri-
butions. The idea is to account for atmos-
pheric variability with a stochastic process 
taking different random values with time 
(Hasselman 1976; Saltzman 1981). 

This leads to an interesting mathematical 
problem: what happens to tipping points 

Simple models formulated in the 1960s started a research tradition focused on stability and transitions in the 
climate system. Later, climate scientists realized the importance of stochasticity. What do these concepts imply 
for ice ages today?

Tipping ice ages
Michel Crucifix

Figure 1: Two examples of conceptual models for paleoclimate dynamics. (A) The Budyko-Sellers model 
envisions two stable states for a range of forcing. Large forcing deviations from the resting state may precipitate 
a transition; (B) In a limit cycle, glacial interglacial stages succeed each other as a result of internal dynamics, 
without the need for forcing. In this case, insolation forcing is but a pacemaker that controls the timing of 
transitions.
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when stochastic terms are included? With 
small amounts of stochasticity, the system 
may exhibit "early warning signals" before 
a transition: a valuable property, indeed, 
if we want to predict the occurrence of a 
large transition. In some cases, however, 
the presence of stochastic components 
modifies the structure of the deterministic 
model so drastically that the tipping point 
completely vanishes. In this case, systems 
like the one depicted in Figure 1 lose their 
relevance. We do not know whether this 
scenario applies to ice ages, but in some 
models even small amounts of stochastic-
ity can substantially modify the timing of 
ice ages (Ditlevsen 2009; Crucifix 2012). 

Some will say that Nature isn't "chaotic", 
"deterministic", or "stochastic". These 
properties only apply to models. What 
mathematics has to offer us is the ability 
to characterize the model which, among 
alternatives, best explains the data at hand 
about the real world. If this best model 
presents tipping points, then we can take 
decisions accordingly. 

Identifying a “best” model among alter-
natives is a problem that can be framed 
statistically. In general, statistics work best 
with models that do not include too many 
parameters. A simple model is also easier 
to analyze and characterize. This is why 
there is still a research tradition focused 

on conceptual models similar to those of 
Figure 1. 

However, our knowledge of environmental 
systems relies also on complex numerical 
models, which allow us to infer emergent 
constraints on the basis of physical laws of 
ice, atmospheric and oceanic motion, and 
such models tend to include hundreds of 
parameters. A key challenge for climate 
scientists is thus to articulate models of 
different levels of complexity within a 
consistent framework, from the conceptual 
models to the complex numerical codes. 

A challenge for the decade
Stochastic theory may again provide a 
way forward. Stochastic parameterizations 
of interannual and interdecadal varia-
bility could be developed on the basis 
of experiments with general circulation 
models. Such parameterizations could 
then be included in models of intermediate 
complexity (EMICs) to estimate the effects 
of interdecadal variability on the slower 
modes of motion. This would provide a 
means to model the cascade of variability 
effects, from interannual to ice-age time 
scales: a revolution with respect to modern 
practices. Whether such stochastic EMICs 
will still present tipping points similar to 
those depicted on Figure 1 is an important 
question waiting to be answered.
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Figure 2: Estimate of the energy spectrum from annual to astronomical scales, adapted from (Huybers and Curry 2006). Numbers in green are spectral slopes on the 
logarithmic plot. All time scales may potentially interact: there is no gap between astronomical and centennial time scales.
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